Auslander-Reiten components with bounded short cycles

Shiping Liu (Université de Sherbrooke)

joint with

Jinde Xu (Xiangtan University, China)

Mathematical Congress of the Americas 2017

July 24 - 27, Montreal
Ringel initiated the study of modules not on any cycles, showing these modules are uniquely determined by their composition factors.
Motivation and objective

1. Ringel initiated the study of modules not on any cycles, showing these modules are uniquely determined by their composition factors.

2. Skowroński, and many others, studied module category and AR-components in which all cycles are of finite depth.

In this talk, we shall describe AR-components in which the short cycles are of bounded depth. As application, give a new characterization of representation-finiteness.
Motivation and objective

1. Ringel initiated the study of modules not on any cycles, showing these modules are uniquely determined by their composition factors.

2. Skowroński, and many others, studied module category and AR-components in which all cycles are of finite depth.

3. Liu studied module category and AR-components in which all short cycles of finite depth.
Motivation and objective

1. Ringel initiated the study of modules not on any cycles, showing these modules are uniquely determined by their composition factors.

2. Skowroński, and many others, studied module category and AR-components in which all cycles are of finite depth.

3. Liu studied module category and AR-components in which all short cycles of finite depth.

4. In this talk, we shall describe AR-components in which the short cycles are of bounded depth.
Ringel initiated the study of modules not on any cycles, showing these modules are uniquely determined by their composition factors.

Skowroński, and many others, studied module category and AR-components in which all cycles are of finite depth.

Liu studied module category and AR-components in which all short cycles of finite depth.

In this talk, we shall describe AR-components in which the short cycles are of bounded depth.

As application, give a new characterization of representation-finiteness.
A: a connected artin algebra.
1. A: a connected artin algebra.
2. $\text{mod}\ A$: category of finitely generated right A-modules.
1. A: a connected artin algebra.
2. $\text{mod}A$: category of finitely generated right A-modules.
3. $\text{ind} A$: subcategory of $\text{mod}A$ of indecomposable modules.
1. A: a connected artin algebra.
2. $\text{mod}A$: category of finitely generated right A-modules.
3. $\text{ind} A$: subcategory of $\text{mod}A$ of indecomposable modules.
4. $\text{rad}(\text{mod}A)$: Jacobson radical of $\text{mod}A$.
1. A: a connected artin algebra.
2. $\text{mod} A$: category of finitely generated right A-modules.
3. $\text{ind} A$: subcategory of $\text{mod} A$ of indecomposable modules.
4. $\text{rad}(\text{mod} A)$: Jacobson radical of $\text{mod} A$.
5. $\text{rad}^n(\text{mod} A)$, the n-th power of $\text{rad}(\text{mod} A)$.

Note: $\text{rad}^\infty(\text{mod} A) := \bigcap_{n \geq 0} \text{rad}^n(\text{mod} A)$, infinite radical.
A: a connected artin algebra.

modA: category of finitely generated right A-modules.

indA: subcategory of modA of indecomposable modules.

rad(modA): Jacobson radical of modA.

radn(modA), the n-th power of rad(modA).

rad$^\infty$(modA) := $\cap_{n \geq 0}$ radn(modA), infinite radical.
1. A: a connected artin algebra.
2. $\text{mod} A$: category of finitely generated right A-modules.
3. $\text{ind} A$: subcategory of $\text{mod} A$ of indecomposable modules.
4. $\text{rad}(\text{mod} A)$: Jacobson radical of $\text{mod} A$.
5. $\text{rad}^n(\text{mod} A)$, the n-th power of $\text{rad}(\text{mod} A)$.
6. $\text{rad}^\infty(\text{mod} A) := \cap_{n \geq 0} \text{rad}^n(\text{mod} A)$, infinite radical.
7. Let Γ_A be the AR-quiver of A, with AR-translation τ.
Given a map $f : X \rightarrow Y$, its *depth* is defined by
Given a map $f : X \to Y$, its depth is defined by

$$\text{dp}(f) = \begin{cases}
\infty, & \text{if } f \in \text{rad}^\infty(X, Y); \\
n, & \text{if } f \in \text{rad}^n(X, Y) \setminus \text{rad}^{n+1}(X, Y).
\end{cases}$$
Given a map $f : X \to Y$, its \textit{depth} is defined by

$$dp(f) = \begin{cases}
\infty, & \text{if } f \in \text{rad}^\infty(X, Y); \\
n, & \text{if } f \in \text{rad}^n(X, Y) \setminus \text{rad}^{n+1}(X, Y).
\end{cases}$$

\textbf{Remark}

1. A map $f : X \to Y$ in $\text{ind}A$ is irreducible $\iff dp(f) = 1$.
Given a map $f : X \to Y$, its depth is defined by

$$dp(f) = \begin{cases}
\infty, & \text{if } f \in \text{rad}^\infty(X, Y); \\
n, & \text{if } f \in \text{rad}^n(X, Y) \setminus \text{rad}^{n+1}(X, Y).
\end{cases}$$

Remark

1. A map $f : X \to Y$ in $\text{ind}A$ is irreducible \iff $dp(f) = 1$.
2. A connected component C of Γ_A is generalized standard if
Depth of a map

Given a map $f : X \to Y$, its depth is defined by

$$\text{dp}(f) = \begin{cases}
\infty, & \text{if } f \in \text{rad}^\infty(X, Y); \\
n, & \text{if } f \in \text{rad}^n(X, Y) \setminus \text{rad}^{n+1}(X, Y).
\end{cases}$$

Remark

1. A map $f : X \to Y$ in $\text{ind}A$ is irreducible $\iff \text{dp}(f) = 1$.
2. A connected component C of Γ_A is generalized standard if every non-zero map $f : X \to Y$, with $X, Y \in C$, is of finite depth.
Depth of a map

Given a map $f : X \to Y$, its depth is defined by

$$dp(f) = \begin{cases} \infty, & \text{if } f \in \text{rad}^{\infty}(X, Y); \\ n, & \text{if } f \in \text{rad}^{n}(X, Y) \setminus \text{rad}^{n+1}(X, Y). \end{cases}$$

Remark

1. A map $f : X \to Y$ in $\text{ind}A$ is irreducible $\iff dp(f) = 1$.
2. A connected component C of Γ_A is generalized standard if every non-zero map $f : X \to Y$, with $X, Y \in C$, is of finite depth.

Proposition (Igusa-Todorov)

If $X_0 \xrightarrow{f_1} X_1 \xrightarrow{} \cdots \xrightarrow{} X_{n-1} \xrightarrow{f_n} X_n$ is a sectional path of irreducible maps in $\text{ind} A$, then $dp(f_n \cdots f_1) = n$.
A *cycle* of length n in $\text{mod} A$ is a sequence of non-zero non-isomorphisms in $\text{ind} A$. If $n = 2$, then σ is called a *short cycle*. The depth of σ is defined by $\text{dp}(\sigma) = \max \{ \text{dp}(f_1), \ldots, \text{dp}(f_n) \}$. If all the X_i belong to a subquiver Γ of Γ_A, then σ is called a *cycle in $\text{add}(\Gamma)$*.
A *cycle* of length n in $\text{mod}A$ is a sequence

$$\sigma : X_0 \xrightarrow{f_1} X_1 \xrightarrow{\cdots} X_{n-1} \xrightarrow{f_n} X_n = X_0$$
A *cycle* of length n in $\text{mod} A$ is a sequence

$$
\sigma : X_0 \xrightarrow{f_1} X_1 \xrightarrow{f_2} \cdots \xrightarrow{f_{n-1}} X_{n-1} \xrightarrow{f_n} X_n = X_0
$$

of non-zero non-isomorphisms in $\text{ind} A$.

2 If $n = 2$, then σ is called a short cycle.

3 The depth of σ is defined by

$$
dp(\sigma) = \max\{dp(f_1), \ldots, dp(f_n)\}.
$$

4 If all the X_i belong to a subquiver Γ of Γ_A, then σ is called a cycle in $\text{add}(\Gamma_A)$.
Cycles

Definition

1. A *cycle* of length n in $\text{mod} \ A$ is a sequence

 $\sigma : X_0 \xrightarrow{f_1} X_1 \xrightarrow{} \cdots \xrightarrow{} X_{n-1} \xrightarrow{f_n} X_n = X_0$

 of non-zero non-isomorphisms in $\text{ind} \ A$.

2. If $n = 2$, then σ is called *short cycle*.
A cycle of length n in $\text{mod} A$ is a sequence

$$\sigma : X_0 \xrightarrow{f_1} X_1 \xrightarrow{} \cdots \xrightarrow{} X_{n-1} \xrightarrow{f_n} X_n = X_0$$

of non-zero non-isomorphisms in $\text{ind} A$.

If $n = 2$, then σ is called short cycle.

The depth of σ is defined by

$$\text{dp}(\sigma) = \max\{\text{dp}(f_1), \ldots, \text{dp}(f_n)\}.$$
Definition

1. A *cycle* of length n in $\text{mod} A$ is a sequence

 $\sigma : X_0 \xymatrix{\rightarrow} X_1 \xymatrix{\rightarrow} \cdots \xymatrix{\rightarrow} X_{n-1} \xymatrix{\rightarrow} X_n = X_0$

 of non-zero non-isomorphisms in $\text{ind} A$.

2. If $n = 2$, then σ is called *short cycle*.

3. The *depth* of σ is defined by

 $$dp(\sigma) = \max\{dp(f_1), \ldots, dp(f_n)\}.$$

4. If all the X_i belong to a subquiver Γ of Γ_A, then σ is called *cycle* in $\text{add}(\Gamma)$.
Theorem

An artin algebra A is representation-finite if

1. $\text{ind } A$ contains no cycle (Ringel);
An artin algebra A is representation-finite if

1. ind A contains no cycle (Ringel);
2. ind A contains no short cycle (Happel-Liu).
A subquiver Γ of Γ_A is called \textit{short-cycle-bounded} if there exists a bound for the depths of short cycles in $\text{add}(\Gamma)$.
A subquiver Γ of Γ_A is called \textit{short-cycle-bounded} if there exists a bound for the depths of short cycles in $\text{add}(\Gamma)$.

If A is representation-finite, then $\text{rad}^\infty(\text{mod } A) = 0$, and consequently, Γ_A is short-cycle-bounded.
A subquiver Γ of Γ_A is called **short-cycle-bounded** if there exists a bound for the depths of short cycles in $\text{add}(\Gamma)$.

If A is representation-finite, then $\text{rad}^\infty(\text{mod } A) = 0$, and consequently, Γ_A is short-cycle-bounded.

Reiten and Skowronski introduced the notion of **generalized double tilted algebra**.
Examples of short-cycle-bounded subquivers

1. A subquiver Γ of Γ_A is called short-cycle-bounded if there exists a bound for the depths of short cycles in $\text{add}(\Gamma)$.

2. If A is representation-finite, then $\text{rad}^\infty(\text{mod } A) = 0$, and consequently, Γ_A is short-cycle-bounded.

3. Reiten and Skowronski introduced the notion of generalized double tilted algebra.

Theorem

An artin algebra A is generalized double tilted $\iff \Gamma_A$ has a faithful, generalized standard and short-cycle-bounded component.
Cuts

Definition

A connected full subquiver Δ of Γ_A is called τ-rigid if $\text{Hom}_A(X, \tau Y) = 0$ for all $X, Y \in \Delta$. A cut is provided, for arrow $X \to Y$ in Γ_A, that if $X \in \Delta$, then Y or τY, not both, belongs to Δ; if $Y \in \Delta$, then X or $\tau^{-1}X$, not both, belongs to Δ.
A connected full subquiver Δ of Γ_A is called τ-rigid if $\text{Hom}_A(X, \tau Y) = 0$ for all $X, Y \in \Delta$.

Definition
A connected full subquiver Δ of Γ_A is called

1. τ-rigid if $\text{Hom}_A(X, \tau Y) = 0$ for all $X, Y \in \Delta$.
2. cut provided, for arrow $X \to Y$ in Γ_A, that
A connected full subquiver Δ of Γ_A is called

1. τ-rigid if $\text{Hom}_A(X, \tau Y) = 0$ for all $X, Y \in \Delta$.
2. cut provided, for arrow $X \rightarrow Y$ in Γ_A, that

 - if $X \in \Delta$, then Y or τY, not both, belongs to Δ;
A connected full subquiver Δ of Γ_A is called

1. **τ-rigid** if $\text{Hom}_A(X, \tau Y) = 0$ for all $X, Y \in \Delta$.
2. **cut** provided, for arrow $X \rightarrow Y$ in Γ_A, that
 - if $X \in \Delta$, then Y or τY, not both, belongs to Δ;
 - if $Y \in \Delta$, then X or $\tau^{-1}X$, not both, belongs to Δ.
Characterizations of tilted algebras

Theorem (Liu)

An artin algebra A is a tilted algebra $\Leftrightarrow \Gamma_A$ contains a faithful τ-rigid cut Δ; and in this case, Δ is a slice.

Corollary (Liu)

If Δ is a τ-rigid cut of Γ_A, then the quotient algebra $B = A/{\text{ann}}(\Delta)$ is tilted with Δ being a slice of Γ_B.
Theorem (Liu)
An artin algebra A is a tilted algebra $\iff \Gamma_A$ contains a faithful τ-rigid cut Δ; and in this case, Δ is a slice.

Corollary (Liu)
If Δ is a τ-rigid cut of Γ_A, then the quotient algebra $B = A/\text{ann}(\Delta)$ is tilted with Δ being a slice of Γ_B.
Let C be a connected component of Γ_A.
Semi-stable components

Let \mathcal{C} be a connected component of Γ_A.

1. The \textit{left stable part} \mathcal{C}_l of \mathcal{C} is its full subquiver of left stable modules.
Semi-stable components

Let C be a connected component of Γ_A.

1. The *left stable part* C_l of C is its full subquiver of left stable modules.

2. The connected components of the quiver C_l are called *left stable components* of C.
Semi-stable components

Let \mathcal{C} be a connected component of Γ_A.

1. The left stable part \mathcal{C}_l of \mathcal{C} is its full subquiver of left stable modules.

2. The connected components of the quiver \mathcal{C}_l are called left stable components of \mathcal{C}.

3. Dually, we have the right stable components of \mathcal{C}.

Let \mathcal{C} be a connected component of Γ_A.

1. The \emph{left stable part} \mathcal{C}_l of \mathcal{C} is its full subquiver of left stable modules.

2. The connected components of the quiver \mathcal{C}_l are called \emph{left stable components} of \mathcal{C}.

3. Dually, we have the \emph{right stable components} of \mathcal{C}.

4. A left or right stable component of \mathcal{C} is called \emph{semi-stable component} of Γ_A.

The core of \mathcal{C} is the full subquiver generated by the modules lying on $P \Rightarrow I$, with P projective and I injective.
Let \mathcal{C} be a connected component of Γ_A.

1. The *left stable part* \mathcal{C}_l of \mathcal{C} is its full subquiver of left stable modules.

2. The connected components of the quiver \mathcal{C}_l are called *left stable components* of \mathcal{C}.

3. Dually, we have the *right stable components* of \mathcal{C}.

4. A left or right stable component of \mathcal{C} is called *semi-stable component* of Γ_A.

5. The *core* of \mathcal{C} is the full subquiver generated by the modules lying on $P \rightsquigarrow I$, with P projective and I injective.
Proposition

Let Γ be an infinite semi-stable component of Γ_A.

Thus, $\text{add}(\Gamma)$ has short cycles of arbitrarily large depths.

If Γ contains no oriented cycle, it contains cuts of Γ_A; and if such a cut is not τ-rigid, then $\text{add}(\Gamma)$ contains short cycles of infinite depth.
Proposition

Let Γ be an infinite semi-stable component of Γ_A.

1. If Γ has oriented cycles, then it has infinite sectional paths.

2. If Γ contains no oriented cycle, it contains cuts of Γ_A; and if such a cut is not τ-rigid, then $\text{add}(\Gamma)$ contains short cycles of infinite depth.
Proposition

Let Γ be an infinite semi-stable component of Γ_A.

1. If Γ has oriented cycles, then it has infinite sectional paths

$$M \rightarrow \cdots \rightarrow \tau^t M \rightarrow \cdots \rightarrow \tau^{2t} M \rightarrow \cdots$$

$$\cdots \rightarrow \tau^{2t} M \rightarrow \cdots \rightarrow \tau^t M \rightarrow \cdots \rightarrow M$$

Thus, $\text{add}(\Gamma)$ has short cycles of arbitrarily large depths.

2. If Γ contains no oriented cycles, it contains cuts of Γ_A; and if such a cut is not τ-rigid, then $\text{add}(\Gamma)$ contains short cycles of infinite depth.
Proposition

Let Γ be an infinite semi-stable component of Γ_A.

1. If Γ has oriented cycles, then it has infinite sectional paths

$$M \rightarrow \cdots \rightarrow \tau^t M \rightarrow \cdots \rightarrow \tau^{2t} M \rightarrow \cdots$$

$$\cdots \rightarrow \tau^{2t} M \rightarrow \cdots \rightarrow \tau^t M \rightarrow \cdots \rightarrow M$$

Thus, $\operatorname{add}(\Gamma)$ has short cycles of arbitrarily large depths.
Proposition

Let Γ be an infinite semi-stable component of Γ_A.

1. If Γ has oriented cycles, then it has infinite sectional paths

\[M \rightarrow \cdots \rightarrow \tau^t M \rightarrow \cdots \rightarrow \tau^{2t} M \rightarrow \cdots \]

\[\cdots \rightarrow \tau^{2t} M \rightarrow \cdots \rightarrow \tau^t M \rightarrow \cdots \rightarrow M \]

Thus, \(\text{add}(\Gamma) \) has short cycles of arbitrarily large depths.

2. If Γ contains no oriented cycle, it contains cuts of Γ_A.
Proposition

Let Γ be an infinite semi-stable component of Γ_A.

1. If Γ has oriented cycles, then it has infinite sectional paths

\[
M \rightarrow \cdots \rightarrow \tau^t M \rightarrow \cdots \rightarrow \tau^{2t} M \rightarrow \cdots
\]

\[
\cdots \rightarrow \tau^{2t} M \rightarrow \cdots \rightarrow \tau^t M \rightarrow \cdots \rightarrow M
\]

Thus, $\text{add}(\Gamma)$ has short cycles of arbitrarily large depths.

2. If Γ contains no oriented cycle, it contains cuts of Γ_A; and if such a cut is not τ-rigid, then $\text{add}(\Gamma)$ contains short cycles of infinite depth.
Theorem

Let C be short-cycle-bounded connected component of Γ_A.

Main result

Theorem

Let C be short-cycle-bounded connected component of Γ_A. Then C consists of

- a finite core containing all possible oriented cycles,
Theorem

Let C be short-cycle-bounded connected component of Γ_A. Then C consists of

- a finite core containing all possible oriented cycles,
- some infinite left stable components $\Gamma_1, \ldots, \Gamma_r$ with $r \geq 0$,

where each Γ_i has τ-rigid cut Δ_i such that $B_i = A / \text{ann}(\Delta_i)$ is tilted and all the predecessors of Δ_i in C belong to the connecting component of Γ_B, and

each Θ_i has τ-rigid cut Σ_i such that $C_i = A / \text{ann}(\Sigma_i)$ is tilted and all the successors of Δ_i in C belong to the connecting component of Γ_C.
Theorem

Let $ \mathcal{C} $ be short-cycle-bounded connected component of $ \Gamma_A $. Then $ \mathcal{C} $ consists of

- a finite core containing all possible oriented cycles,
- some infinite left stable components $ \Gamma_1, \ldots, \Gamma_r $ with $ r \geq 0 $,
- some infinite right stable components $ \Theta_1, \ldots, \Theta_s $ with $ s \geq 0 $.

1. Each $ \Gamma_i $ has $ \tau $-rigid cut $ \Delta_i $ such that $ B_i = A/\text{ann}(\Delta_i) $ is tilted and all the predecessors of $ \Delta_i $ in $ \mathcal{C} $ belong to the connecting component of $ \Gamma_{B_i} $.

2. Each $ \Theta_i $ has $ \tau $-rigid cut $ \Sigma_i $ such that $ C_i = A/\text{ann}(\Sigma_i) $ is tilted and all the successors of $ \Delta_i $ in $ \mathcal{C} $ belong to the connecting component of $ \Gamma_{C_i} $.

Let C be short-cycle-bounded connected component of Γ_A. Then C consists of

- a finite core containing all possible oriented cycles,
- some infinite left stable components $\Gamma_1, \ldots, \Gamma_r$ with $r \geq 0$,
- some infinite right stable components $\Theta_1, \ldots, \Theta_s$ with $s \geq 0$.

where

1. each Γ_i has τ-rigid cut Δ_i such that $B_i = A/\text{ann}(\Delta_i)$ is tilted and all the predecessors of Δ_i in C belong to the connecting component of Γ_{B_i}.
Theorem

Let C be short-cycle-bounded connected component of Γ_A. Then C consists of

- a finite core containing all possible oriented cycles,
- some infinite left stable components $\Gamma_1, \ldots, \Gamma_r$ with $r \geq 0$,
- some infinite right stable components $\Theta_1, \ldots, \Theta_s$ with $s \geq 0$.

where

1. each Γ_i has τ-rigid cut Δ_i such that $B_i = A/\text{ann}(\Delta_i)$ is tilted and all the predecessors of Δ_i in C belong to the connecting component of Γ_{B_i}.

2. each Θ_i has τ-rigid cut Σ_i such that $C_i = A/\text{ann}(\Sigma_i)$ is tilted and all the successors of Δ_i in C belong to the connecting component of Γ_{C_i}.
Let $A = kQ/I$ be radical squared zero, where

$$Q : 5 \rightarrow 4 \xrightarrow{=} 3 \rightarrow 2 \xleftarrow{=} 1.$$
Let $A = kQ/I$ be radical squared zero, where

$$Q : 5 \rightarrow 4 \rightarrow 3 \rightarrow 2 \leftarrow 1.$$

We have a short-cycle-bounded AR-component as follows:
The algebra A is of representation-finite if and only if there exists a bound for the depths of short cycles in $\text{ind} A$.

Theorem

Γ_A has at most finitely many short-cycle-bounded components; and each of them has only finitely many τ-orbits.
Theorem

\(\Gamma_A \) has at most finitely many short-cycle-bounded components; and each of them has only finitely many \(\tau \)-orbits.

Theorem

The algebra \(A \) is of representation-finite if and only if there exists a bound for the depths of short cycles in \(\text{ind} A \).