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Introduction

The problem of giving a general description of the shapes of Auslander-
Reiten components of an artin algebra has been settled for semiregular com-
ponents (see [4, 9, 14]). Recently, S. Li has considered this problem for com-
ponents in which every possible path from an injective module to a projective
module is sectional. The result says that such a component is embeddable in
some ZZ∆ with ∆ a quiver without oriented cycles if it contains no oriented cy-
cle. In this note, we shall show that such a component is a semiregular tube if it
contains an oriented cycle. In this way, one obtains a complete description of the
shapes of such components. For this reason, we propose to call such components
almost regular. We shall further give some new characterizations of tilted and
quasi-tilted algebras (see (2.1), (2.2)), which shows that every Auslander-Reiten
component of a quasitilted algebra is almost regular. As an easy application, we
shall obtain a result of Coelho-Skowroński [3] saying that a quasitilted algebra
is tilted if it admits a non-semiregular Auslander-Reiten component.

1. Almost regular components

Throughout this note, let A be a connected artin algebra, mod A be the
category of finitely generated right A-modules and ind A the full subcategory
of mod A generated by the indecomposable modules. We denote by ΓA the
Auslander-Reiten quiver of A and by τ, τ− the Auslander-Reiten translations
DTr, TrD respectively. We shall identify a module X in ind A with the corre-
sponding vertex [X] (that is, the isomorphism class of X) in ΓA. We shall say
that a module X ∈ ΓA is left stable (respectively, right stable) if τnX (respec-
tively, τ−nX) is nonzero for all positive integers n.

Recall that a connected component of ΓA is regular if it contains no projective
or injective module; and semiregular if it does not contain both a projective
module and an injective module.

1.1. Definition. A connected component C of ΓA is said to be almost
regular if every possible path

X0 → X1 → · · · → Xn−1 → Xn
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in C with X0 being injective and Xn being projective is sectional, that is, there
is no i with 0 < i < n such that τXi+1 = Xi−1.

Note that a semiregular Auslander-Reiten component is almost regular by
definition. Conversely we have the following result.

1.2. Theorem. Let C be an almost regular component of ΓA. If C contains
an oriented cycle, then it is semiregular.

Proof. Assume that C contains both a projective module and an injective
module. We first show that C contains no τ -periodic module. In fact if this is
not true, then C contains an arrow M → N or N → M with M being τ -periodic
and N being neither left stable nor right stable. Thus M admits a projective
successor P and an injective predecessor I in C. This gives rise to a nonsectional
path in C from I to P , and hence a contradiction. Let now

X1 → X2 → · · · → Xr−1 → Xr = X1

be an oriented cycle in C. If the Xi are all stable, then they are all τ -periodic
[8, (2.7)], which is a contradiction. Thus the cycle contains a nonstable module.
We need only to consider the case where one of the Xi is not right stable. By
applying τ− if necessary, we may assume that X1 is injective. Let

Y1 → Y2 → · · · → Ys → Ys+1 (∗)
be a path in C of minimal positive length such that Y1 has an injective prede-
cessor in C and Ys+1 = τ tY1 with t ≥ 0.

Assume that t = 0, that is Ys+1 = Y1. Then the path

Y1 → Y2 → · · · → Ys → Ys+1 → Ys+2 = Y2

is not sectional [1]. Thus s > 2 since Y1 and Y2 are not τ -periodic. We shall
obtain a contradiction to the minimality of the length of (∗) by finding a shorter
path of this kind. Let 1 < i0 < s + 2 be such that Yi0−1 = τYi0+1. Note that
Yi0+1 admits no projective successor in C since Y1 has an injective predecessor
in C. In particular the Yi with 1 ≤ i ≤ s are all nonprojective. If i0 = s + 1,
then Ys = τY2 and we have a desired path Y2 → · · · → Ys = τY2. If i0 = s, then
Ys−1 = τYs+1 = τY1 and we get a path Y1 → · · · → Ys−1 = τY1. If 1 < i0 < s,
then

Y1 → · · · → Yi0−1 → τYi0+2 → · · · → τYs+1 = τY1

is a desired path since the Yi are all nonprojective.
Thus t > 0. This implies that Y1 has no projective successor in C since τ tY1

has an injective predecessor in C. Suppose that 0 ≤ j < t and C contains a path

τ jY1 → τ jY2 → · · · → τ jYs → τ t+jY1.

Since j < t, the module τ jY1 is a successor of τ tY1, and hence of Y1 in C. Thus
τ t+jY1 and the τ jYi with 1 ≤ i ≤ s are all nonprojective. Thus C contains a
path

τ j+1Y1 → τ j+1Y2 → · · · → τ j+1Ys → τ t+j+1Y1.
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By induction, C contains a path

τ tY1 → τ tY2 → · · · → τ tYs → τ2tY1.

Continuing this argument, we conclude that for all i ≥ 0, C contains a path

τ itY1 → τ itY2 → · · · → τ itYs → τ (i+1)tY1.

Therefore the Yi with 1 ≤ i ≤ s are all left stable, and C contains an infinite
path

Y1 → Y2 → · · · → Ys → τ tY1 → τ tY2 → · · · → τ tYs → τ2tY1 → · · · (∗∗)
Suppose that Yj = τkYi with 1 ≤ i < j ≤ s and k ∈ ZZ. Then we have two

paths Yi → · · · → Yj = τkYi and

Yj → · · · → Ys → τ tY1 → · · · → τ tYi = τ t−kYj

of length less than s. This is again a contradiction to the minimality of the length
of (∗) since either k ≥ 0 or t− k ≥ 0. Therefore the Yi with 1 ≤ i ≤ s pairwise
belong to different τ -orbits. In particular the infinite path (∗∗) is sectional.

Let Γ be the left stable component of ΓA containing the Yi. Then Γ contains
oriented cycles but no τ -periodic module. Thus every module in Γ admits at
most two immediate predecessors in Γ [9, (2.3)]. We shall prove that the Yi with
1 ≤ i ≤ s meet each τ -orbit of Γ . Indeed, let τ jYi with 1 ≤ i ≤ s and j ∈ ZZ be
a module in Γ and Z an immediate successor of τ jYi in Γ . Let p, q be positive
integers such that p + j = qt. Then τp+1Z is an immediate predecessor of
τp+jYi = τ qtYi in Γ . Since q > 0, the module τ qtYi has two distinct immediate
predecessors in Γ which lie in the τ -orbit of the Yi with 1 ≤ i ≤ s. Therefore Z
lies in the τ -orbit of the Yi with 1 ≤ i ≤ s.

Let U = τnYi with 1 ≤ i ≤ s and n ∈ ZZ be a module in Γ . If n ≤ 0, then
U is clearly a successor of Y1 in Γ . If n > 0, then n = td + m with d ≥ 0
and 0 ≤ m < t. Therefore U is a successor of τ (d+1)tYi, and hence of Y1 in Γ .
This shows that every module in Γ is a successor of Y1 in Γ . Suppose that Γ
is different from C, that is C contains a projective module. Then C contains an
arrow M → P with M ∈ Γ and P being projective. Thus P is a successor of Y1

in C, which is a contradiction. Therefore C = Γ is left stable. This completes
the proof the theorem.

Let C be a connected component of ΓA. Recall that a section of C is a con-
nected full convex subquiver which contains no oriented cycle and meets exactly
once each τ -orbit of C (see [11, section 2]). The main result of [7] says that C
contains a section ∆ if and only if C is almost regular and contains no oriented
cycle. In this case, C can be embedded in ZZ∆ [9, (3.2)]. Combining these results
with those in [4], [9, (2.5)] and [14], we obtain the following description of the
shapes of almost regular Auslander-Reiten components.

1.3. Theorem. Let C be an almost regular component of ΓA. Then C is
either a ray tube, a coray tube, a stable tube or can be embedded in some ZZ∆
with ∆ a valued quiver without oriented cycles.
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We conclude this section by studying some behaviors of the maps involving
modules from an Auslander-Reiten component containing a section. Recall that
a path in ind A is a sequence

X0
f1−→ X1 → · · · → Xn−1

fn−→ Xn

of nonzero non-isomorphisms in ind A. In this case, we call X0 a predecessor of
Xn, and Xn a successor of X0 in indA. Moreover the path is said to be sectional
if there is no i with 0 < i < n such that τXi+1

∼= Xi−1. Thus a (sectional)
path of irreducibles maps in ind A gives rise to a (sectional) path in ΓA and vice
versa.

1.4. Lemma. Let C be a connected component of ΓA containing a section ∆.
Let f : X → Y be a nonzero map in indA. If Y lies in some τ r∆ with r ∈ ZZ
while X is not a predecessor of Y in C, then τn∆ with n ≥ r contains a module
which is a successor of X in indA.

Proof. Assume that Y lies in τ r∆ and X is not a predecessor of Y in C. We
shall use induction on s = n− r. The lemma is trivially true for s = 0. Suppose
that s > 0 and the lemma is true for s − 1. Since X is not a predecessor of Y
in C and f is nonzero, there is an infinite path

· · · → Yi → Yi−1 → · · · → Y1 → Y0 = Y

in C such that HomA(X,Yi) 6= 0 for all i ≥ 0. Since C is embedded in ZZ∆, every
Yi belongs to some τ ri∆ with ri ≥ r. Now the lemma is true for s if there is
some ri ≥ n. Otherwise, there is some i0 ≥ 0 such that ri = ri0 for all i ≥ i0.
Therefore the path

· · · → Yj → Yj−1 → · · · → Yi0+1 → Yi0

lies entirely in τ ri0 ∆, and hence is sectional. By Lemma 2 of [S], there is some
p, q ≥ r0 such that HomA(Yp, τYq) 6= 0. Note that Yp is not a predecessor of τYq

in C. By inductive hypothesis, there is a module in τn∆ which is a successor of
Yp, and hence of X in ind A. The proof is completed.

2. Quasitilted algebras

We begin this section with a new characterization of tilted algebras which
shows the separating property of a complete slice. We denote by D(A) the
standard injective cogenerator of mod A.

2.1. Theorem. Let C be a connected component of ΓA. Then A is tilted with
C a connecting component of ΓA if and only if C contains a section ∆ satisfying:

(1) HomA(X, τY ) = 0 for all X,Y ∈ ∆,
(2) HomA(τ−X, A) = 0 for all X ∈ ∆, and
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(3) HomA(D(A), τX) = 0 for all X ∈ ∆.
Proof. Assume that A is tilted and C is a connecting component of ΓA.

Let S be a complete slice in mod A whose indecomposable objects lie in C. It is
then well-known that the full subquiver ∆ of C generated by the indecomposable
objects of S is a desired section of C.

Conversely let ∆ be a section of C satisfying the conditions stated in the
theorem. Then ∆ is finite [13, Lemma 2]. Let T be the direct sum of the modules
in ∆. Then T is a partial tilting module of injective dimension less than two
(see, for example, [12, (2.4)]). Hence there is a module N in mod-A such that
T⊕N is tilting module [2, (2.1)]. Assume that there is an indecomposable direct
summand U of N that is not a direct summand of T . Then either HomA(U, T ) 6=
0 or HomA(T, U) 6= 0 since EndA(T ⊕ N) is connected. This implies that
either HomA(U, τT ) 6= 0 or HomA(τ−T,U) 6= 0 since ∆ is a finite section of C.
Therefore either Ext1A(T, U) 6= 0 or Ext1A(U, T ) 6= 0. This is contrary to T ⊕N
being a tilting module. Therefore T is a tilting module, and hence a faithful
module. It follows now from [10, (1.6)] that A is tilted and C is a connecting
component of ΓA.

Recall that A is quasitilted if the global dimension of A is at most two and
every module in ind A is either of projective dimension less than two or of
injective dimension dimension less than two. There are many characterizations
of quasitilted algebras (see [5]). We note that the following is convenient in
certain cases.

2.2. Proposition. An artin algebra A is quasitilted if and only if every pos-
sible path in ind A from an injective module to a projective module is sectional.

Proof. We first give the proof of sufficiency which is due to Happel. Assume
that A is not quasitilted. If the global dimension of A is greater than two, then
there is a simple A-module S of projective dimension greater than two. Hence
the first syzygy of S has an indecomposable direct summand X of projective
dimension greater than one. Therefore HomA(D(A), τX) 6= 0. Note that X is
a submodule of the radical of the projective cover of S. This gives rise to a
nonsectional path in ind A from an injective module to a projective module. If
there is some Y in ind A of projective and injective dimensions both greater than
one, then HomA(D(A), τX) 6= 0 and HomA(τ−X,A) 6= 0. So we can also find
a nonsectional path in indA from an injective module to a projective module.

Assume now that

X0
f1−→ X1 → · · · → Xn−1

fn−→ Xn

is a nonsectional path in ind A with X0 being injective and Xn being projective.
We shall show that Xn has a predecessor in ind A whose projective dimension
is greater than one. This implies that A is not quasitilted [5, (1.14)]. Indeed,
let 0 < r < n be such that τXr+1 = Xr−1. Then r > 1 since X0 is injective.
If f1 · · · fr−1 6= 0, then the projective dimension of Xr+1 is greater than one.
Suppose that f1 · · · fr = 0. Let 1 < s ≤ r be such that f1 · · · fs−1 6= 0 and
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(f1 · · · fs−1)fs = 0. By the lemma of Section 1 of [6], there is some Z in
indA such that HomA(X0, τZ) 6= 0 and HomA(Z, Xs) 6= 0. Therefore Z is a
predecessor of Xn in indA of projective dimension greater than one. The proof
is completed.

As an immediate consequence, every connected component of the Auslander-
Reiten quiver of a quasitilted algebra is almost regular (see also [5, (1.11)]).

2.3. Theorem [3]. Let A be a connected quasitilted artin algebra. If ΓA

contains a non-semiregular component C, then A is tilted with C the connecting
component of ΓA.

Proof. Let C be a non-semiregular component of ΓA. By Theorem 1.2, C
contains no oriented cycle. By [7, (2.10)], C contains a section ∆ such that
every module in ∆ has an injective predecessor in ∆ while τ∆ has no injective
predecessor in C. Dually C contains a section ∆1 such that every module in ∆1

has a projective successor in ∆1.
Assume that HomA(τ−X, P ) 6= 0 with X ∈ ∆ and P ∈ indA being projec-

tive. Since X has an injective predecessor I in ∆, we have a nonsectional path
in ind A from I to P , which is a contradiction. Suppose that there is a path
in ind A from an injective module I0 to a module τX with X ∈ ∆. Then I0

is not a predecessor of τX in C. Applying Lemma 1.4 to ∆1, we get a module
Y ∈ ∆1 such that τY is a successor of I0 in ind A. Since Y admits a projec-
tive successor P0 in ∆1, this gives rise to a nonsectional path in ind A from
I0 to P0, which is impossible. Therefore there is no module in τ∆ which is a
successor of an injective module in indA. In particular HomA(D(A), τ∆) = 0
and HomA(∆, τ∆) = 0. By Theorem 2.1, A is tilted and C is the connecting
component of ΓA. This completes the proof.
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