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Abstract

We provide here additional details relatively to our paper.

1 Reminder of properties of multi-fixation RBM

Here we write down explicitly the main properties of the multi-fixation RBM, specifically the form
of its conditional distributions:
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where each glimpse xy, is a binary vector.

2 Detailed description of the hybrid cost gradient

We start with the hybrid cost:
Hybrid cost: Chybria = — log p(y'|x}. ) — alog p(y*, x}.x) - (1)
The gradient with respect to any parameter 6 has the following simple form:
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Algorithm 1 Gibbs sampling in Contrastive Divergence, to obtain samples x| % and y"°¢ for the
multi-fixation RBM, for the hybrid cost

Input: training pair (y*, x¢ )

% Notation: a ~ p means a is sampled from p

h?e8 ~ p(hly’, x}. )

y"& ~ p(y|h"e#)

for £ from 1 to K do

Xzeg ~ p<xk|hneg)
end for

The expectations with respect to h only are tractable. Because h is binary and the energy function
is linear in h, we have that
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where we defined
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In other words, the stochastic value of h is simply replaced by its expectation given y* and x! ..

The expectation with respect to y and h can also be done exactly:
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where C'is the number of classes, and p(y|x’. ;) can be computed tractably.

However, the expectation with respect to y, x;.x and h is intractable. Contrastive Divergence
provides a good approximation however, by replacing the expectation over the input units x;.x with
a point estimate at a sample x| . We also replace the expectation over y by a point estimate at a
sample y"°& (while not necessary, it is more efficient to do so):

0 0
EyixllKﬁh |:39E(Y7X11K7h):| = Ey’xl:K |:Eh|)’7X1;K |:69E(h|y7X11K):|:|

a ne; ne
= Enpjynes xi8 {%E(y ®,x, Igoh)}
0

= —E(y"® x|, h(y"®, x| %))

08

In Contrastive Divergence, the samples x] 5 and yneg are obtamed by running a brief MCMC

chain, initialized at the training data observatlon x!.; and y’. In particular, we use one step of
Gibbs sampling, first sampling a value of h"*8 for h given x! ., and then sampling a new value
for all glimpses X1 % and for the target y"°¢ given h™°¢. Algorithm 1 gives a pseudocode of this
sampling procedure.



Algorithm 2 Gibbs sampling in Contrastive Divergence, to obtain samples x;; and y°¢ for the
multi-fixation RBM, for the k' term of the hybrid-sequential cost

Input: training pair (y*,x} ;)

9% Notation: a ~ p means a is sampled from p
h?e8 ~ p(hly’,x1,;)

yneg ~ p(y‘hneg)

X, ~ p(x[h"8)

All that is left to derive are the gradients of the energy function with respect to all parameters, which
are simply:
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3 Detailed description of the hybrid-sequential cost gradient

We now move to the hybrid-sequential cost:
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The expectations with respect to h only and with respect to h and y are still tractable. The only
difference is that we have K such expectations, one for every subsequence x1., where k € 1,..., K.
Hence, the formulas of the previous section still apply, the only difference being that the number of
glimpses k& changes in the visible layer.

As for the expectations with respect to y, x; and h, it is intractable but Contrastive Divergence can
also be used, much like for the expectations with respect to h, y and x;.x in the previous section.
The only difference is that a sample x, ® for the kM glimpse only is needed, instead of for the whole
sequence of glimpses, since we are conditioning on the previous glimpses x;.;_1. Algorithm 2 gives
a pseudo-code for sampling x; .

The training update for the hybrid-sequential cost can just proceed sequentially. For k = 1 to K,
the k' glimpse x, is obtained and then gradients for the corresponding k' group of terms in the



summation of Equation 2 are estimated and accumulated. Once all gradients have been accumulated,
the multi-fixation RBM is updated by a gradient step.



