Supplementary Material: Learning to combine foveal glimpses with a third-order Boltzmann machine

Hugo Larochelle and Geoffrey Hinton

Department of Computer Science, University of Toronto 6 King's College Rd, Toronto, ON, Canada, M5S 3G4 {larocheh, hinton}@cs.toronto.edu

Abstract

We provide here additional details relatively to our paper.

1 Reminder of properties of multi-fixation RBM

Here we write down explicitly the main properties of the multi-fixation RBM, specifically the form of its conditional distributions:

$$p(\mathbf{h}|\mathbf{y}, \mathbf{x}) = \prod_{j} p(h_{j}|\mathbf{y}, \mathbf{x})$$

$$p(h_{j} = 1|\mathbf{y}, \mathbf{x}_{1:K}) = \operatorname{sigm}(c_{j} + \mathbf{U}_{j}.\mathbf{y} + \sum_{k=1}^{K} \mathbf{P}_{j}. \operatorname{diag}(\mathbf{z}(i_{k}, j_{k})) \mathbf{F} \mathbf{x}_{k})$$

$$p(\mathbf{x}_{k}|\mathbf{h}) = \prod_{i} p(x_{ki}|\mathbf{h}) \quad \forall k \in \{1, \dots, K\}$$

$$p(x_{ki} = 1|\mathbf{h}) = \operatorname{sigm}(b_{i} + \mathbf{h}^{\top} \mathbf{P} \operatorname{diag}(\mathbf{z}(i_{k}, j_{k})) \mathbf{F}_{\cdot i}) \quad \forall k \in \{1, \dots, K\}$$

$$p(\mathbf{y} = \mathbf{e}_{l}|\mathbf{h}) = \frac{\exp(d_{l} + \mathbf{h}^{\top} \mathbf{U}_{\cdot l})}{\sum_{l^{*} = 1}^{C} \exp(d_{l^{*}} + \mathbf{h}^{\top} \mathbf{U}_{\cdot l^{*}})}$$

$$p(\mathbf{y} = \mathbf{e}_{l}|\mathbf{x}_{1:K}) = \frac{\exp(d_{l} + \sum_{j} \operatorname{softplus}(c_{j} + U_{jl} + \sum_{k=1}^{K} \mathbf{P}_{j}. \operatorname{diag}(\mathbf{z}(i_{k}, j_{k})) \mathbf{F} \mathbf{x}_{k}))}{\sum_{l^{*} = 1}^{C} \exp(d_{l^{*}} + \sum_{j} \operatorname{softplus}(c_{j} + U_{jl^{*}} + \sum_{k=1}^{K} \mathbf{P}_{j}. \operatorname{diag}(\mathbf{z}(i_{k}, j_{k})) \mathbf{F} \mathbf{x}_{k}))}$$

where each glimpse \mathbf{x}_k is a binary vector.

2 Detailed description of the hybrid cost gradient

We start with the hybrid cost:

Hybrid cost:
$$C_{\text{hybrid}} = -\log p(\mathbf{y}^t | \mathbf{x}_{1:K}^t) - \alpha \log p(\mathbf{y}^t, \mathbf{x}_{1:K}^t)$$
. (1)

The gradient with respect to any parameter θ has the following simple form:

$$\frac{\partial \mathcal{C}_{\text{hybrid}}}{\partial \theta} = \operatorname{E}_{\mathbf{h}|\mathbf{y}^{t},\mathbf{x}_{1:K}^{t}} \left[\frac{\partial}{\partial \theta} E(\mathbf{y}^{t},\mathbf{x}_{1:K}^{t},\mathbf{h}) \right] - \operatorname{E}_{\mathbf{y},\mathbf{h}|\mathbf{x}_{1:K}^{t}} \left[\frac{\partial}{\partial \theta} E(\mathbf{y},\mathbf{x}_{1:K}^{t},\mathbf{h}) \right] \\
+ \alpha \left(\operatorname{E}_{\mathbf{h}|\mathbf{y}^{t},\mathbf{x}_{1:K}^{t}} \left[\frac{\partial}{\partial \theta} E(\mathbf{y}^{t},\mathbf{x}_{1:K}^{t},\mathbf{h}) \right] - \operatorname{E}_{\mathbf{y},\mathbf{x}_{1:K},\mathbf{h}} \left[\frac{\partial}{\partial \theta} E(\mathbf{y},\mathbf{x}_{1:K},\mathbf{h}) \right] \right)$$

Algorithm 1 Gibbs sampling in Contrastive Divergence, to obtain samples $\mathbf{x}_{1:K}^{\text{neg}}$ and \mathbf{y}^{neg} for the multi-fixation RBM, for the hybrid cost

```
Input: training pair (\mathbf{y}^t, \mathbf{x}_{1:K}^t) % Notation: a \sim p means a is sampled from p \mathbf{h}^{\text{neg}} \sim p(\mathbf{h}|\mathbf{y}^t, \mathbf{x}_{1:K}^t) \mathbf{y}^{\text{neg}} \sim p(\mathbf{y}|\mathbf{h}^{\text{neg}}) for k from 1 to K do \mathbf{x}_k^{\text{neg}} \sim p(\mathbf{x}_k|\mathbf{h}^{\text{neg}}) end for
```

The expectations with respect to h only are tractable. Because h is binary and the energy function is linear in h, we have that

$$\mathbf{E}_{\mathbf{h}|\mathbf{y}^{t},\mathbf{x}_{1:K}^{t}}\left[\frac{\partial}{\partial \theta}E(\mathbf{y}^{t},\mathbf{x}_{1:K}^{t},\mathbf{h})\right] = \frac{\partial}{\partial \theta}E(\mathbf{y}^{t},\mathbf{x}_{1:K}^{t},\mathbf{h}(\mathbf{y}^{t},\mathbf{x}_{1:K}^{t}))$$

where we defined

$$\mathbf{h}(\mathbf{y}^t, \mathbf{x}_{1:K}^t) = \operatorname{sigm}\left(\mathbf{c} + \mathbf{U}\mathbf{y}^t + \sum_{k=1}^K \mathbf{P} \operatorname{diag}(\mathbf{z}(i_k, j_k)) \mathbf{F} \mathbf{x}_k^t\right).$$

In other words, the stochastic value of \mathbf{h} is simply replaced by its expectation given \mathbf{y}^t and $\mathbf{x}_{1:K}^t$. The expectation with respect to \mathbf{y} and \mathbf{h} can also be done exactly:

$$\begin{split} \mathbf{E}_{\mathbf{y},\mathbf{h}|\mathbf{x}_{1:K}^{t}} \left[\frac{\partial}{\partial \theta} E(\mathbf{y}, \mathbf{x}_{1:K}^{t}, \mathbf{h}) \right] &= \mathbf{E}_{\mathbf{y}|\mathbf{x}_{1:K}^{t}} \left[\mathbf{E}_{\mathbf{h}|\mathbf{y},\mathbf{x}_{1:K}^{t}} \left[\frac{\partial}{\partial \theta} E(\mathbf{y}, \mathbf{x}_{1:K}^{t}, \mathbf{h}) \right] \right] \\ &= \mathbf{E}_{\mathbf{y}|\mathbf{x}_{1:K}^{t}} \left[\frac{\partial}{\partial \theta} E(\mathbf{y}, \mathbf{x}_{1:K}^{t}, \mathbf{h}(\mathbf{y}, \mathbf{x}_{1:K}^{t})) \right] \\ &= \sum_{\mathbf{y} \in \{\mathbf{e}_{l}|l \in \{1, \dots, C\}\}} p(\mathbf{y}|\mathbf{x}_{1:K}^{t}) \frac{\partial}{\partial \theta} E(\mathbf{y}, \mathbf{x}_{1:K}^{t}, \mathbf{h}(\mathbf{y}, \mathbf{x}_{1:K}^{t})) \end{split}$$

where C is the number of classes, and $p(\mathbf{y}|\mathbf{x}_{1:K}^t)$ can be computed tractably.

However, the expectation with respect to \mathbf{y} , $\mathbf{x}_{1:K}$ and \mathbf{h} is intractable. Contrastive Divergence provides a good approximation however, by replacing the expectation over the input units $\mathbf{x}_{1:K}$ with a point estimate at a sample $\mathbf{x}_{1:K}^{\text{neg}}$. We also replace the expectation over \mathbf{y} by a point estimate at a sample \mathbf{y}^{neg} (while not necessary, it is more efficient to do so):

$$\mathbf{E}_{\mathbf{y},\mathbf{x}_{1:K},\mathbf{h}} \left[\frac{\partial}{\partial \theta} E(\mathbf{y}, \mathbf{x}_{1:K}, \mathbf{h}) \right] = \mathbf{E}_{\mathbf{y},\mathbf{x}_{1:K}} \left[\mathbf{E}_{\mathbf{h}|\mathbf{y},\mathbf{x}_{1:K}} \left[\frac{\partial}{\partial \theta} E(\mathbf{h}|\mathbf{y}, \mathbf{x}_{1:K}) \right] \right] \\
= \mathbf{E}_{\mathbf{h}|\mathbf{y}^{\text{neg}},\mathbf{x}_{1:K}^{\text{neg}}} \left[\frac{\partial}{\partial \theta} E(\mathbf{y}^{\text{neg}}, \mathbf{x}_{1:K}^{\text{neg}}, \mathbf{h}) \right] \\
= \frac{\partial}{\partial \theta} E(\mathbf{y}^{\text{neg}}, \mathbf{x}_{1:K}^{\text{neg}}, \mathbf{h}(\mathbf{y}^{\text{neg}}, \mathbf{x}_{1:K}^{\text{neg}}))$$

In Contrastive Divergence, the samples $\mathbf{x}_{1:K}^{\mathrm{neg}}$ and $\mathbf{y}^{\mathrm{neg}}$ are obtained by running a brief MCMC chain, initialized at the training data observation $\mathbf{x}_{1:K}^t$ and \mathbf{y}^t . In particular, we use one step of Gibbs sampling, first sampling a value of $\mathbf{h}^{\mathrm{neg}}$ for \mathbf{h} given $\mathbf{x}_{1:K}^t$, and then sampling a new value for all glimpses $\mathbf{x}_{1:K}^{\mathrm{neg}}$ and for the target $\mathbf{y}^{\mathrm{neg}}$ given $\mathbf{h}^{\mathrm{neg}}$. Algorithm 1 gives a pseudocode of this sampling procedure.

Algorithm 2 Gibbs sampling in Contrastive Divergence, to obtain samples $\mathbf{x}_{1:k}^{\text{neg}}$ and \mathbf{y}^{neg} for the multi-fixation RBM, for the k^{th} term of the hybrid-sequential cost

```
 \begin{split} \textbf{Input:} & \text{ training pair } (\mathbf{y}^t, \mathbf{x}_{1:k}^t) \\ \% & \text{ Notation: } a \sim p \text{ means } a \text{ is sampled from } p \\ & \mathbf{h}^{\text{neg}} \sim p(\mathbf{h}|y^t, \mathbf{x}_{1:k}^t) \\ & \mathbf{y}^{\text{neg}} \sim p(\mathbf{y}|\mathbf{h}^{\text{neg}}) \\ & \mathbf{x}_k^{\text{neg}} \sim p(\mathbf{x}_k|\mathbf{h}^{\text{neg}}) \end{split}
```

All that is left to derive are the gradients of the energy function with respect to all parameters, which are simply:

$$\frac{\partial}{\partial d_{l^*}} E(\mathbf{y}, \mathbf{x}_{1:K}, \mathbf{h}) = -y_{l^*}$$

$$\frac{\partial}{\partial c_j} E(\mathbf{y}, \mathbf{x}_{1:K}, \mathbf{h}) = -h_j$$

$$\frac{\partial}{\partial b_i} E(\mathbf{y}, \mathbf{x}_{1:K}, \mathbf{h}) = -\sum_{k=1}^K x_{ki}$$

$$\frac{\partial}{\partial U_{jl^*}} E(\mathbf{y}, \mathbf{x}_{1:K}, \mathbf{h}) = -h_j y_{l^*}$$

$$\frac{\partial}{\partial P_{ji}} E(\mathbf{y}, \mathbf{x}_{1:K}, \mathbf{h}) = -h_j \sum_{k=1}^K z(i_k, j_k)_i \mathbf{F}_i \cdot \mathbf{x}_k$$

$$\frac{\partial}{\partial F_{ji}} E(\mathbf{y}, \mathbf{x}_{1:K}, \mathbf{h}) = -\mathbf{h}^{\top} \sum_{k=1}^K \mathbf{P}_{\cdot j} z(i_k, j_k)_j x_{ki}$$

$$\frac{\partial}{\partial \overline{z}(i_k, j_k)_a} E(\mathbf{y}, \mathbf{x}_{1:K}, \mathbf{h}) = -(\mathbf{h}^{\top} \mathbf{P}_{\cdot a}) z(i_k, j_k)_a (1 - z(i_k, j_k)_a) (\mathbf{F}_a \cdot \mathbf{x}_k)$$

3 Detailed description of the hybrid-sequential cost gradient

We now move to the hybrid-sequential cost:

$$\textbf{Hybrid-sequential cost:} \ \ \mathcal{C}_{\text{hybrid-seq}} = \sum_{k=1}^{K} -\log p(\mathbf{y}^t|\mathbf{x}_{1:k}^t) - \alpha \log p(\mathbf{y}^t,\mathbf{x}_k^t|\mathbf{x}_{1:k-1}^t)$$

It has the following gradient:

$$\frac{\partial \mathcal{C}_{\text{hybrid-seq}}}{\partial \theta} = \sum_{k=1}^{K} \left\{ \mathbf{E}_{\mathbf{h}|\mathbf{y}^{t},\mathbf{x}_{1:k}^{t}} \left[\frac{\partial}{\partial \theta} E(\mathbf{y}^{t}, \mathbf{x}_{1:k}^{t}, \mathbf{h}) \right] - \mathbf{E}_{\mathbf{y},\mathbf{h}|\mathbf{x}_{1:k}^{t}} \left[\frac{\partial}{\partial \theta} E(\mathbf{y}, \mathbf{x}_{1:k}^{t}, \mathbf{h}) \right] \right. \\
\left. + \alpha \left(\mathbf{E}_{\mathbf{h}|\mathbf{y}^{t},\mathbf{x}_{1:k}^{t}} \left[\frac{\partial}{\partial \theta} E(\mathbf{y}^{t}, \mathbf{x}_{1:k}^{t}, \mathbf{h}) \right] - \mathbf{E}_{\mathbf{y},\mathbf{x}_{k},\mathbf{h}|\mathbf{x}_{1:k-1}} \left[\frac{\partial}{\partial \theta} E(\mathbf{y}, \mathbf{x}_{1:k}, \mathbf{h}) \right] \right) \right\}$$

The expectations with respect to \mathbf{h} only and with respect to \mathbf{h} and \mathbf{y} are still tractable. The only difference is that we have K such expectations, one for every subsequence $\mathbf{x}_{1:k}$ where $k \in {1, \dots, K}$. Hence, the formulas of the previous section still apply, the only difference being that the number of glimpses k changes in the visible layer.

As for the expectations with respect to \mathbf{y} , \mathbf{x}_k and \mathbf{h} , it is intractable but Contrastive Divergence can also be used, much like for the expectations with respect to \mathbf{h} , \mathbf{y} and $\mathbf{x}_{1:K}$ in the previous section. The only difference is that a sample $\mathbf{x}_k^{\text{neg}}$ for the k^{th} glimpse only is needed, instead of for the whole sequence of glimpses, since we are conditioning on the previous glimpses $\mathbf{x}_{1:k-1}$. Algorithm 2 gives a pseudo-code for sampling $\mathbf{x}_k^{\text{neg}}$.

The training update for the hybrid-sequential cost can just proceed sequentially. For k = 1 to K, the kth glimpse \mathbf{x}_k is obtained and then gradients for the corresponding kth group of terms in the

summation of Equation 2 are estimated and accumulated. Once all gradients have been accumulated, the multi-fixation RBM is updated by a gradient step.